1. (3 Pts) What is the resulting concentration when 455.8 mL of a 0.0786 M Na₂SO₄ solution is evaporated to a volume of 50.00 mL?

$$M_1V_1 = M_2 V_2$$

 $(0.0786 M)(455.8 mL) = M_2 (50.00 mL)$
 $M_2 = 0.717$

2. (3 Pts) What concentration H₃PO₄ results when 50.00 mL of 0.355 M H₃PO₄ solution is diluted to 400.0 mL?

$$(0.355 \, M) (50.00 \, mL) = M_2 (400.0 \, mL)$$

 $M_2 = 0.0444$

3. (4 Pts) How many grams of HNO₃ are present in 450.0 mL of 0.0550 M HNO₃ solution?

4. 25.00 mL of 0.505 M hydrochloric acid solution is reacted with 20.50 mL of 0.303 M barium hydroxide solution. You must write a balanced equation.

a. (4 Pts) Determine how many moles of the excess reactant is present when the reaction is done.

5. (4 Pts) A barium hydroxide solution is being standardized with potassium hydrogen phthalate (KHP). If it took 33.25 mL of the barium hydroxide solution to neutralize 0.5728 grams KHP, what was the molarity of the barium hydroxide solution? You must write a balanced equation.
Ba (011)268) +2KHC8 HyOy (5) -> 2H2O(1+ (Ba C8H4)04 + K2C8H4O4) 33,25m2 0.57289 These would mixed
204, 229 (molar mass) 10,5728 gkAp) mot KHP [1mol = 0.04218 mol
$\frac{10.5728 \text{ g kAP} / \text{mot KHP [1 mol]}}{33.25 \times 10^{-3} \text{L}} = 0.04218 \frac{\text{Bolow}}{\text{Lpa}} = 0.04218 \frac{\text{Bolow}}{\text{Lpa}} = 0.04218 \frac{\text{Bolow}}{\text{Lpa}} = 0.04218 \frac{\text{Mol}}{\text{Lpa}} = 0.04218 \frac{\text{Lpa}}{\text{Lpa}} = 0.04218 \text{$
 6 (3 Pts) Determine the number of moles of water produced by the reaction of 155 g of ammonia and 356 g of oxygen. 4NH₃ + 5O₂ → 4NO + 6H₂O 155 2 356 9
Based on: 155 g Ms MHz 6 moles H20 = 13.6 mole H20 NH3 NH3 MHs WH3
Based on, $356992 mol 02 6 mol = (13.35 m.) H20$
Since On 12 the Limiting Reactant